题目描述
Link
Solution
其实如果这道题没有容斥的操作就是这样:
然后我们可以推一下:
设 $T=ad$
因为 $\sum_{d | T} d \mu({\lfloor \frac{T}{d} \rfloor})$ 这部分是狄利克雷卷积的形式,而 $id * \mu = \varphi$
所以线性筛一遍欧拉函数再用整除分块就行了。
最后再用容斥瞎搞搞就可以了。
Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
| #include <iostream> #include <cstdio> #include <cstring> #include <algorithm> #define MAXN 500010 #define MOD 1000000007 #define ll long long #define int long long int p[MAXN + 10], tot, phi[MAXN + 10], T, g[MAXN + 10], answ; bool chk[MAXN + 10]; template <typename Tp> Tp min(Tp a, Tp b) { if (a < b) return a; else return b; } template <typename Tp> Tp max(Tp a, Tp b) { if (a > b) return a; else return b; } void sieve() { phi[1] = 1; chk[1] = true; for (int i = 2; i <= MAXN; i++) { if (!chk[i]) { p[++tot] = i; phi[i] = i - 1; } for (int j = 1; j <= tot && i * p[j] <= MAXN; j++) { chk[i * p[j]] = 1; if (!(i % p[j])) { phi[i * p[j]] = phi[i] * p[j]; break; } phi[i * p[j]] = phi[i] * phi[p[j]]; } } for (int i = 1; i <= MAXN; i++) { g[i] = (g[i - 1] + phi[i]) % MOD; } } int sum(int x, int y) { int n = min(x, y); int m = max(x, y); ll ans = 0; for (int l = 1, r; l <= n; l = r + 1) { r = min(n / (n / l), m / (m / l)); ans += (((n / l) % MOD * (m / l) % MOD) % MOD) * ((g[r] - g[l - 1] + MOD) % MOD) % MOD; } return (ans % MOD); } int a, b, c, d, n, m; signed main() { sieve(); scanf("%lld", &T); scanf("%lld%lld", &n, &m); while (T--) { scanf("%lld%lld%lld%lld", &a, &b, &c, &d); answ = (sum(c, d) + sum(a - 1, b - 1) - sum(c, b - 1) - sum(d, a - 1) + 2 * MOD) % MOD; printf("%lld\n", answ % MOD); } }
|