-主席树-树链剖分-LCA- [洛谷 P2633]Count on a tree

题目描述

Link

Solution

为了应对这种强制在线求第K大的情况,我不得不去学了一个主席树。。。

真是恶!

在进行DFS的时候,每递归到一个节点都在主席树上插入一下。

最后再进行树上差分就可以了。

这道题我调了两天,最后才发现竟然是求LCA时将fa[top[x]]写成了fa[x]

Code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107

// #pragma comment(linker, "/STACK:1024000000,1024000000")
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define OK puts("OK")
#define MAXN 400010
#define re register
bool p1;
int a[MAXN * 20], b[MAXN], f[MAXN], ls[MAXN * 20], rs[MAXN * 20], tot = 0, rt[MAXN], lans;
int siz[MAXN], id[MAXN], son[MAXN], fa[MAXN], dep[MAXN], tim, top[MAXN], len;
int head[MAXN], ecnt;
int _t = 0;
template <typename T>
inline void read(T &x) {
T f = 1;
x = 0;
char c = getchar();
while (c > '9' || c < '0') {if (c == '-') f = -1; c = getchar();}
while (c >= '0' && c <= '9') {x = x * 10 + c - '0'; c = getchar();}
x *= f;
}
struct Edge {
int v, nx;
}e[MAXN << 2];
inline void add(int f, int t) {
e[++ecnt] = (Edge) {t, head[f]};
head[f] = ecnt;
}
void insert(int l, int r, int x, int &y, int p) {
y = ++tot;
a[y] = a[x] + 1;
if (l == r) return;
int m = (l + r) >> 1;
if (p <= m) rs[y] = rs[x], insert(l, m, ls[x], ls[y], p);
else ls[y] = ls[x], insert(m + 1, r, rs[x], rs[y], p);
}
void dfs(int ft, int u, int d) {
dep[u] = d;
fa[u] = ft;
siz[u] = 1;
insert(1, len, rt[ft], rt[u], b[u]);
// printf("%d %d %d %d %d\n", ft, u, b[u], d, rt[u]);
for (re int i = head[u]; i; i = e[i].nx) {
int to = e[i].v;
if (to == ft) continue;
dfs(u, to, d + 1);
siz[u] += siz[to];
if (siz[son[u]] < siz[to]) son[u] = to;
// printf("%d\n", u);
}
}
void dfs2(int u, int topf) {
top[u] = topf;
if (!son[u]) return;
dfs2(son[u], topf);
for (re int i = head[u]; i; i = e[i].nx) {
int to = e[i].v;
if (to == fa[u] || to == son[u]) continue;
dfs2(to, to);
}
}
inline int LCA(int x, int y) {
while (top[x] != top[y]) {
if (dep[top[x]] < dep[top[y]]) std::swap(x, y);
x = fa[top[x]];
}
if (dep[x] > dep[y]) std::swap(x, y);
return x;
}
int ask(int l, int r, int x, int y, int la, int fala, int k) {
if (l == r) return l;
int m = (l + r) >> 1;
int p = a[ls[y]] + a[ls[x]] - a[ls[la]] - a[ls[fala]];
if (p >= k) return ask(l, m, ls[x], ls[y], ls[la], ls[fala], k);
else return ask(m + 1, r, rs[x], rs[y], rs[la], rs[fala], k - p);
}
int n, m, l, r, k, x, y;
int main() {
// freopen("data.in", "r", stdin);
// freopen("data.out", "w", stdout);
read(n), read(m);
for (re int i = 1; i <= n; i++) {
read(b[i]);
f[i] = b[i];
}
std::sort(f + 1, f + 1 + n);
len = std::unique(f + 1, f + 1 + n) - f - 1;
for (re int i = 1; i <= n; i++) {
b[i] = std::lower_bound(f + 1, f + 1 + len, b[i]) - f;
}
for (re int i = 1; i < n; i++) {
read(x), read(y);
add(x, y);
add(y, x);
}
dfs(0, 1, 1);
dfs2(1, 1);
for (re int i = 1; i <= m; i++) {
read(l), read(r), read(k);
l = lans ^ l;
int lc = LCA(l, r);
printf("%d\n", lans = f[ask(1, len, rt[l], rt[r], rt[lc], rt[fa[lc]], k)]);
}
return 0;
}
文章作者: RiverFun
文章链接: https://stevebraveman.github.io/blog/2019/08/07/93/
版权声明: 本博客所有文章除特别声明外,均采用 CC BY-NC-SA 4.0 许可协议。转载请注明来自 RiverFun

评论